Does FGF23 toxicity influence the outcome of chronic kidney disease?

نویسنده

  • Mohammed Shawkat Razzaque
چکیده

Maintenance of physiologic phosphate balance is important for essential cellular functions [1]. Dysregulation of the phosphate balance in the form of hypophosphataemia can lead to the development of myopathy, cardiac dysfunction, haematological abnormalities and bone mineralization defects [1]. In contrast, hyperphosphataemia can cause vascular and soft tissue calcification [2,3]. Studies have convincingly demonstrated that FGF23 is a master regulator of systemic phosphate homeostasis [4–9]. FGF23 is a 30 kDa protein that is proteolytically processed to generate smaller N-terminal (∼18 kDa) and Cterminal (∼12 kDa) fragments. The N-terminal fragment of FGF23 contains the FGF receptor-binding domain, while the C-terminal fragment is proposed to be necessary for interaction with Klotho (a type 1 membrane protein with homology to ß-glucosidase), which is believed to be a cofactor in FGF23–FGF receptor interactions [10]. FGF23 is a circulating phosphaturic factor that controls systemic phosphate homeostasis by regulating renal inorganic phosphate reabsorption [5]. The expression of members of the sodium phosphate co-transporter family (Na/Pi-2a and Na/Pi-2c) that mediate phosphate uptake in proximal tubular epithelial cells can be suppressed by FGF23 [11]. By suppressing Na/Pi co-transporter activity, FGF23 can reduce renal phosphate reabsorption, thereby increasing urinary phosphate excretion. The in vivo phosphaturic effect of FGF23 is convincingly demonstrated in animal studies. For instance, transgenic mice overexpressing human or mouse FGF23/Fgf23 have severe urinary phosphate wasting due to the suppression of renal Na/Pi co-transporter activity [12–14]. Inactivation of Fgf23 function in mice resulted

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Update on Fibroblast Growth Factor 23 in Chronic Kidney Disease

Chronic kidney disease (CKD) is a public health epidemic that affects millions of people worldwide. Presence of CKD predisposes individuals to high risks of end-stage renal disease (ESRD), cardiovascular disease, and premature death. Disordered phosphate homeostasis with elevated circulating levels of fibroblast growth factor 23 (FGF23) is an early and pervasive complication of CKD. CKD is like...

متن کامل

Klotho/FGF23 Axis in Chronic Kidney Disease and Cardiovascular Disease.

BACKGROUND Membrane αKlotho (hereinafter called Klotho) is highly expressed in the kidney and functions as a coreceptor of FGF receptors (FGFRs) to activate specific fibroblast growth factor 23 (FGF23) signal pathway. FGF23 is produced in bones and participates in the maintenance of mineral homeostasis. The extracellular domain of transmembrane Klotho can be cleaved by secretases and released i...

متن کامل

Fibroblast Growth Factor-23—A Potential Uremic Toxin

Fibroblast growth factor-23 (FGF23) is a circulating member of the FGF family produced mainly by the osteocytes and osteoblasts that can act as a hormone. The main action of FGF23 is to lower phosphatemia via the reduction of urinary phosphate reabsorption and the decrease of 1,25(OH)₂-D generation in the kidney. In the course of chronic kidney disease (CKD), plasma FGF23 concentration rises ea...

متن کامل

Etiology and Outcome of Chronic Kidney Disease in Iranian Children

Background Considering the significant geographical and ethnical differences in pattern of incidence, etiology and outcome of chronic kidney disease (CKD), the present study aimed to assess the etiology and outcome of CKD in Iranian children. Materials and Methods In a cross-sectional study etiology and outcome of 372 children aged 3 months to 18 years with CKD was studied during the period 199...

متن کامل

Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone that in end-stage renal disease is markedly increased in serum; however, the mechanisms responsible for this increase are unclear. Here, we tested whether phosphate retention in chronic kidney disease (CKD) is responsible for the elevation of FGF23 in serum using Col4α3 knockout mice, a murine model of Alport disease exhibiting CKD. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2009